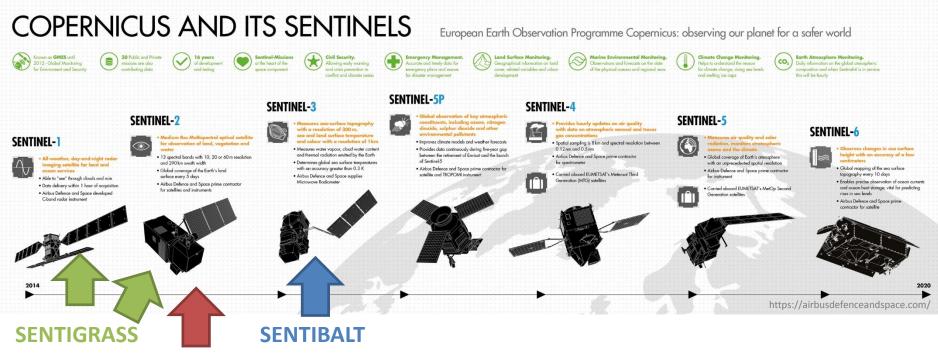

INSTITUTE FOR ENVIRONMENTAL SOLUTIONS

Institute for Environmental Solutions

Dainis Jakovels, Technical Project Manager of PECS projects dainis.jakovels@videsinstituts.lv, +371 29116741

SENTISIMULAT

Simulation of Sentinel-2 Images for Land Cover / Land Use Monitoring Using Hyperspectral Airborne Remote Sensing 2015-2017


SENTIGRASS

Assessment of Grassland Quality and Quantity Parameters and Management Activities Using Sentinel-1&2 data 2016-2018

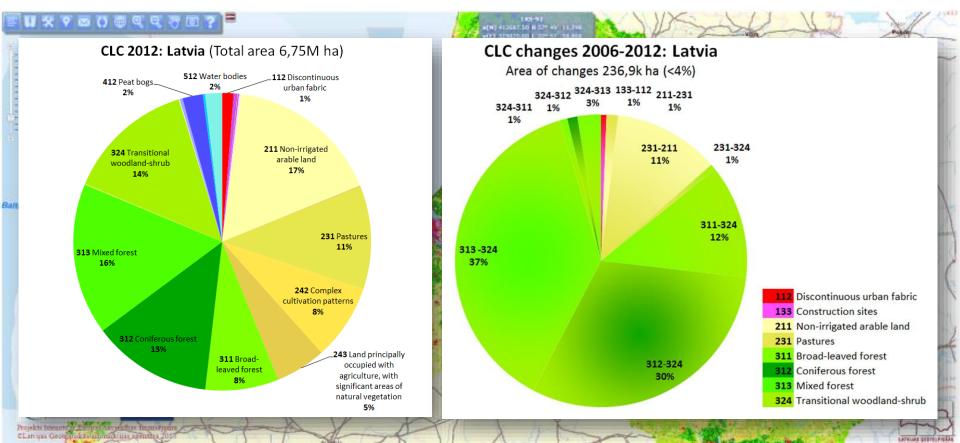
SENTIBALT

Simulating Performance of ESA Future Satellites for Water Quality of the Baltic Sea 2015-2017

SENTISIMULAT

SENTISIMULAT

Simulation of Sentinel-2 Images for Land Cover / Land Use Monitoring Using Hyperspectral Airborne Remote Sensing 2015-2017


The project is aimed to develop Land Cover / Land Use classification algorithm for Latvia using simulated and real Sentinel-2 MSI data

Motivation

Land cover mapping in Latvia is performed as part of the Corine Land Cover (CLC) initiative every six years. However, low spatial resolution and accuracy, infrequent updates and expensive manual production have limited its use at the national level.

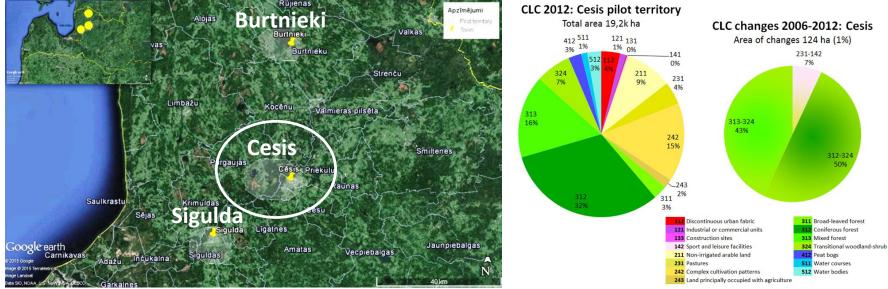
A snapshot of LGIA Map Browser with Latvian CLC2012 data layer

Classification scheme

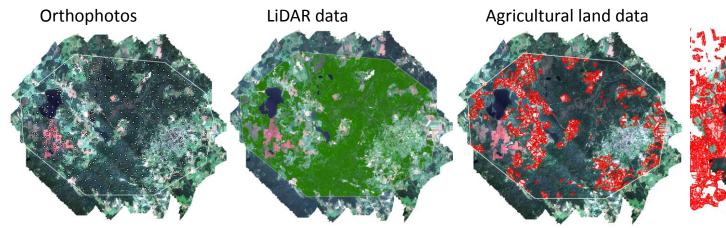
Level 1	Level 2	Level 3	Level 4	Level 5
10000	11000 High vegetation	11100 Trees (>5m)	11110 Coniferous trees	Dominant tree species
Vegetation	(>2m)	(MMU 0.1 ha)	CLC 312 Coniferous forests	(optional, input:
		CLC 31 Forests	11120 Deciduous trees	FLD**)
			CLC 312 Broad-leaved forests	
		11200 Shrubland (25m)	11210 Coniferous shrubs	
		(MMU 0.1 ha)	11220 Deciduous shrubs	
		CLC 324 Transitional		
		woodland-shrub		
	12000 Low vegetation	12100 Grassland	12110 Dense grass	Agricultural cultures
	(<2m)	(MMU 0.3 ha)	12120 Sparse grass	(optional, input: ALD*)
		CLC 321 Natural grassland		_
		12200 Agricultural lands	12210 Green agricultures	_
		(MMU 0.3 ha)	12220 Dry agricultures	
		CLC 2 Agricultural area		
		12300 Wetlands	12310 Inland marshes	12311 Inland marshes
		CLC 4 Wetlands	CLC 411 Inland marshes	(water)
				12312 Inland marshes
				(coastal)
			12320 Peat bogs	
			CLC 412 Peat bogs	
20000	21000 Water			
Non-vegetation	CLC 5 Water bodies			
	22000 Artificial/Urban			
	CLC 1 Artificial surfaces			
	23000 Bare	23100 Light bare land		
	CLC 1 Artificial surfaces	23200 Dark bare land		
		23300 Peat extraction sites		

* ADL – Agricultural Land data from the Rural Support Service

** FLD - Forest Land data from the State Forest Service


Supervised pixel-based (20 m/px) classification approach using one-vs-all support vector machine (SVM) classifier was chosen for the development of the algorithm.

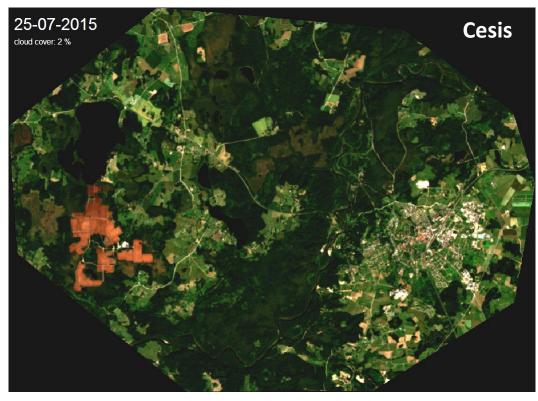
Pilot territories and reference data



Corine Land Cover data

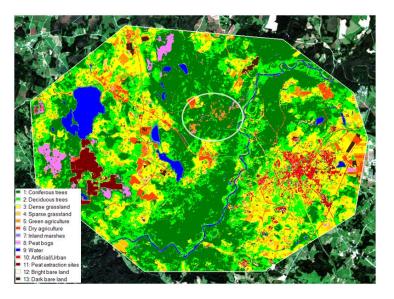

Pilot territories

Available reference data



Forest land data

Available Sentinel-2 data

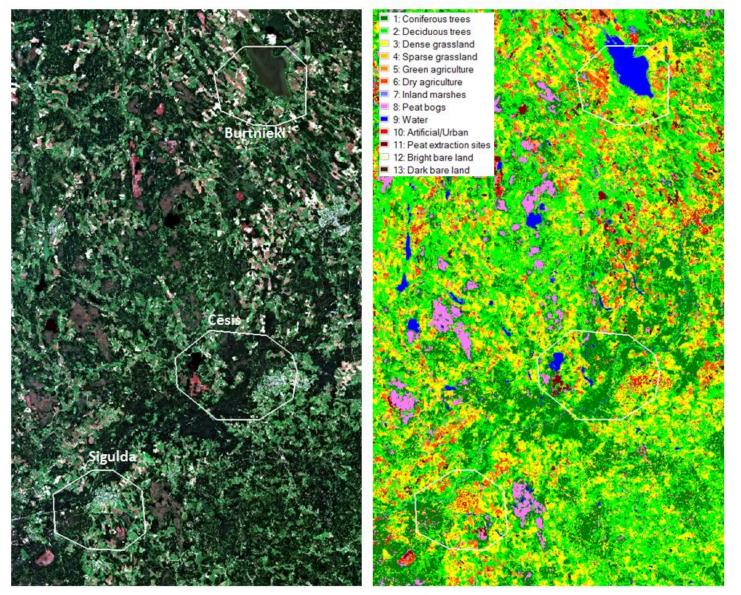


	Orbit No	Cloud situation assessment					
Date		Cesis T35VLD	Sigulda T35VLD	Burtnieki T35VLE			
25-07-2015	36	Clear	Clear	Cumulus clouds			
04-08-2015	36	Clear	Clear	Clear			
14-08-2015	36	Clear	Clear	Clear			
21-08-2015	136	Cumulus clouds	Clear	Clear			
24-08-2015	36	Clear	Clear	Clear			
07-04-2016	136	Cumulus clouds	Clear	Clear			
27-04-2016	136	Cumulus clouds	is clouds Clear Cl				
30-04-2016	36	Clear	Clear	Cumulus clouds			
07-05-2016	136	Partly cloudy	Completely cloud	Clear			
06-07-2016	136	Partly cloudy	Partly cloudy	Completely cloudy			
25-08-2016	136	Some cumulus clouds	Some cumulus clouds	Cumulus clouds			
14-09-2016	136	Clear	Clear	Clear			

Development of classification algorithm

Classification of LC in Cesis from 14.08.2015. Sentinel-2 data using SVM classifier

	Cesis Polygon	Cesis Adapted	Cesis Regular All	Cesis Regular H.Conf.
Overall	90,5%	90,1%	67,6%	77,2%
Coniferous trees	87,1%	96,0%	82,0%	87,8%
Deciduous trees	89,2%	79,9%	54,5%	57,0%
Dense grassland	90,6%	90,6%	63,4%	84,2%
Sparse grassland	94,4%	84,5%	48,7%	71,4%
Green agriculture	70,8%	64,2%	70,0%	NaN
Dry agriculture	86,7%	75,4%	31,0%	53,0%
Inland marshes	95,3%	88,3%	15,0%	33,3%
Peat bogs	90,5%	88,0%	70,0%	NaN
Water	97,6%	94,7%	91,7%	100,0%
Artificial/Urban	97,6%	99,0%	98,0%	93,3%
Peat extr sites	100,0%	100,0%	95,7%	91,4%
Light bare soil	96,2%	98,2%	90,0%	100,0%
Dark bare soil	80,5%	89,4%	57,1%	80,0%


SVM score values for the assessment and replacement of possible outliers

Development of classification algorithm

Classification of LC for all pilot territories from 14.08.2015. Sentinel-2 data using SVM classifier

SENTIGRASS

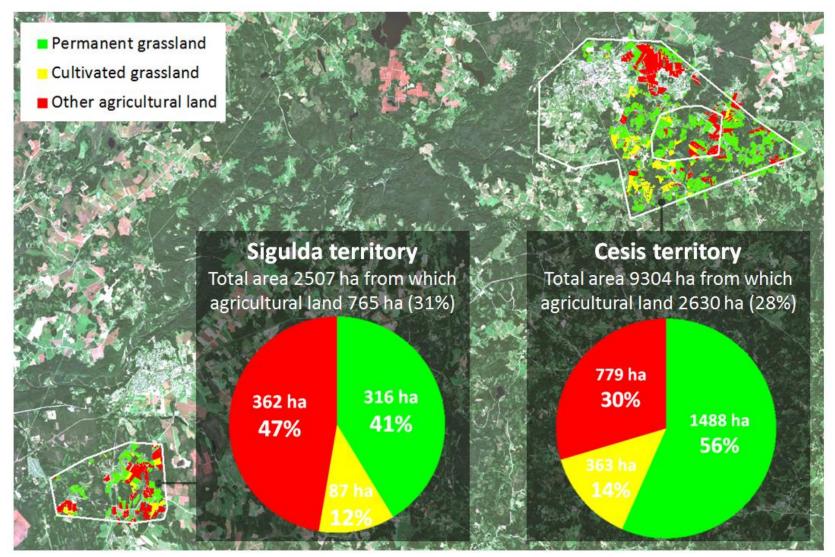
Assessment of Grassland Quality and Quantity Parameters and Management Activities Using Sentinel-1&2 data 2016-2018

The project is aimed to explore the capability of Sentinel-1 radar and Sentinel-2 optical data use and fusion for the assessment of grassland management activities and quantitative/qualitative parameters, thus moving towards the development of a multifunctional grassland surveillance and monitoring tool.

Collaboration with Tartu Observatory

User needs analysis

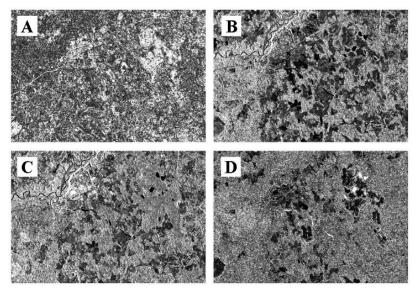
List of potential end-users:


- The Rural Support Service
- The Natural Conservation Agency (grassland experts)
- The Latvian Fund of Nature
- The Latvian Rural Advisory and Training Center
- Local municipalities and regional institutions

Target data products and accuracy:

- Mapping of grasslands (>80%)
- Ploughing detection (>80%)
- Moving detection (>80%)
- Grazing detection (not set)
- Grassland biomass (RMSE <25% of mean biomass value)
- Mapping of invasive/expansive species (>80% for HR remote sensing data)
- Mapping of shrubs/trees (>80%)
- Biodiversity assessment (not set)

Pilot territories


Two pilot territories – Sigulda and Cesis

Data acquisition

Acquisition of extensive data sets for both pilot territories:

- 25 Sentinel-1 SAR
- 7 Sentinel-2 MS scenes
- Airborne hyperspectral, LiDAR and high resolution orthophoto data from 2 dates
- Weekly monitoring information from 122 grassland polygons
- 42 biomass samples
- reference maps of invasive/expansive species, species composition
- Forest and Agricultural land data

Figure 1.1. Sample images from the data stack covering study area around Sigulda. (*a*) Coherence. (*b*) VH backscattering coefficient. (*c*) VV backscattering coefficient. (*d*) VH/VV ratio. Source: RON160 September 23 acquisition. Coherence was calculated for September 23 and October 5 pair.

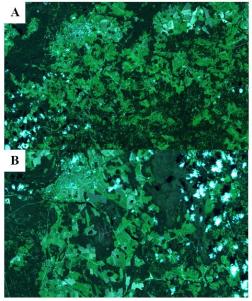
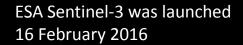


Figure 1.2. Cesis (A) and Sigulda (B) pilot territories in Sentinel-2A MSI data (25.08.2016) $\,$

SENTIBALT

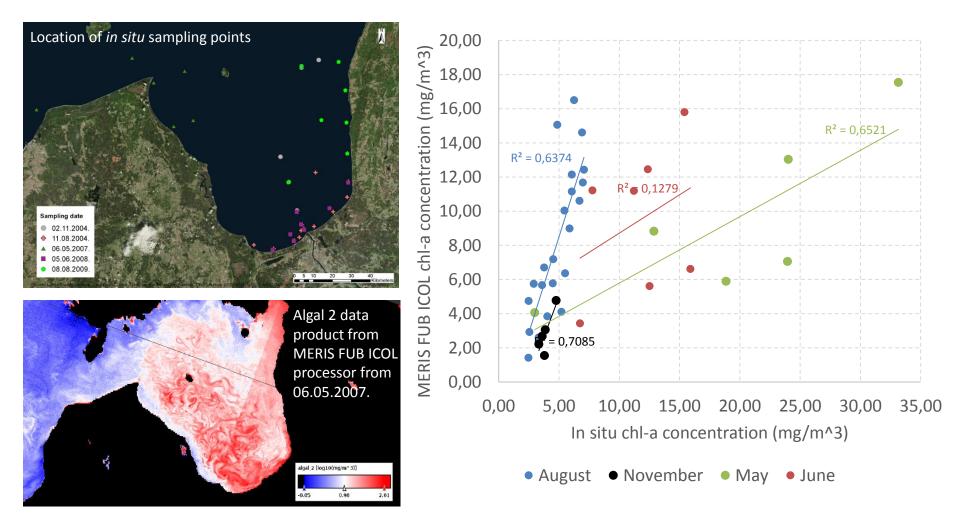
Simulating Performance of ESA Future Satellites for Water Quality of the Baltic Sea


The project is aimed to develop improved remote sensing algorithms and methods suitable for the Baltic Sea conditions and estimate their potential accuracy for different concentration ranges of optically active substances.

Collaboration with Estonian Marine Institute

http://www.esa.int/

Motivation

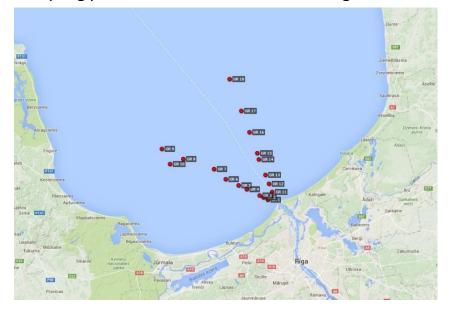


First Sentinel-3 image from the Baltic Sea 9 May 2016

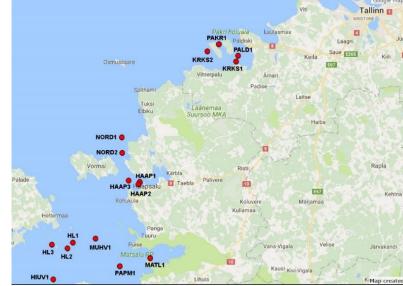
False color composite image

Testing MERIS processors with archive data

Location of *in situ* sampling points from five cloud free MERIS dates and correlation (R²) between *in situ* sampling and best performing MERIS FUB ICOL results.


Data acquisition campaigns

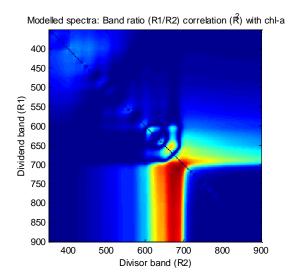
Four simultaneous *in situ* and airborne data acquisition campaigns were performed:

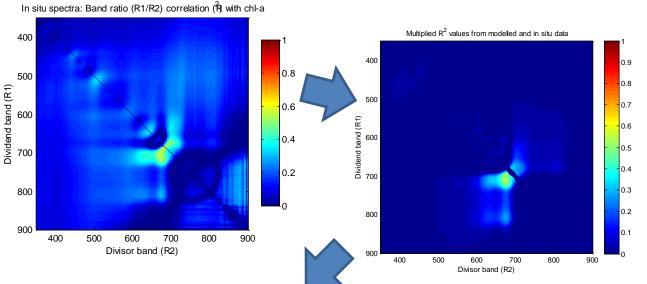

- 11.08.2015. the Gulf of Riga (Latvia) 10 sampling points
- 12.08.2015. the Gulf of Riga (Latvia) 8 sampling points
- 31.05.2016. Estonian coastal waters 8 sampling points
- 14.09.2016. Estonian coastal waters 8 sampling points

Campaigns resulted in 34 in situ sampling points with airborne overpass.

The main limitation for optimal data acquisition was weather conditions.

Sampling points from 2015 in the Gulf of Riga

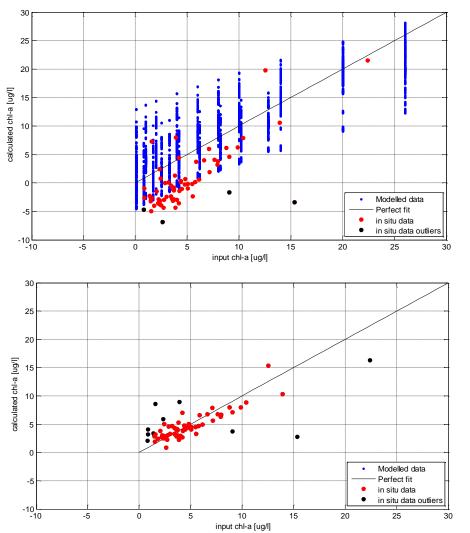

Sampling points from 2016 in Estonian coastal waters


Testing and development of algorithms

Additional spectral data:

- 60 in situ sampling points from Estonian coastal waters (EMI);
- 15600 modelled spectra for optical properties characteristic for the Baltic Sea (FEI)

Testing of best performing band ratio algorithms for the Baltic Sea

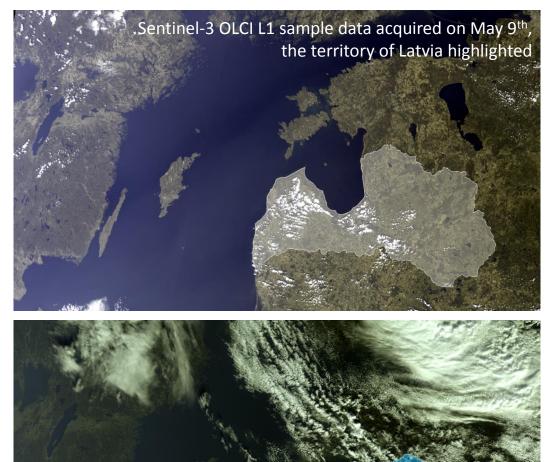


Modelled data			In situ data			Modelled and in situ data			
R1 [nm]	R2 [nm]	R^2	R1 [nm]	R2 [nm]	R^2	R1 [nm]	R2 [nm]	R^2	R^2
707,5	687,5	0,976	692	676	0,575	702	674	0,957	0,551
705,0	687,5	0,975	690	678	0,574	702	672	0,952	0,554
710,0	687,5	0,974	694	674	0,572	706	672	0,960	0,549
707,5	685,0	0,974	690	680	0,572	706	674	0,964	0,546
710,0	685,0	0,973	692	678	0,572	700	674	0,949	0,555

Testing and development of algorithms

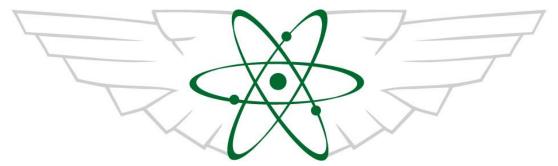
Comparison of modelled and *in situ* spectral data using best performing two band ratio (702, 674 nm).

Modelled data (chl-a concentration <30 ug/l) is used for training


Performance of the model:

- modelled data: R² = 0.762, RMSE = 3.76 ug/l;
- in situ data: R² = 0.546, RMSE = 5.60 ug/l.

in situ data is used for training


Performance of the model: - all in situ points: R² = 0.546, RMSE = 2.53 ug/l; - after removal of outiers: R² = 0.775, RMSE = 1.27 ug/l.

Sentinel-3 OLCI data availability

The best image (in terms of cloud cover) since the beginning of regular data flow over central part of Baltic Sea (October 29th)

INSTITUTE FOR ENVIRONMENTAL SOLUTIONS

Institute for Environmental Solutions

Dainis Jakovels, Technical Project Manager of PECS projects dainis.jakovels@videsinstituts.lv, +371 29116741